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FOREWORD

This document is the fourth of nine sections that comprise the final re-

port prepared by the Minneapolis-Honeywell Regulator Cpmpany for the Na-
tional Aeronautics and Space Administration under Contract NASr-27. The

report is issued in the following nine sections to facilitate updating as prog-
ress warrants:

1529-TR1 An Introduction to Self-Evaluating State Vector Control of

Linear Systems

1529-TR2 Modes of Control

1529-TR3 Measurement of the State Vector

1529-TR4 The Theory of Time-Optimal Control of Linear Systems

1529-TR5 Computational Solution of Optimal Control Problems

1529-TR6

1529-TR7

The Theory of Average Power Optimal Control of Linear

Systems

Approximations to State Vector Control

1529-TR8 A Logical Net Mechanization for Time-Optimal Regulation

1529-TR9 Adaptive Controllers Derived by Stability Considerations

Section I {1529-TRI) provides the motivation for the research effort,
defines the problems, indicates the status, and presents computer results to
show what can feasibly be accomplished at the present time. The computa-
tional technique which is used to obtain trajectories satisfying the Maximum

Principle is described.

In section 2 it is shown that, given the vector differential equation
= Ax + bu {where x is an n vector, A an nxn constant matrix, b an nxl

constant matrix, and u a scalar), if any m components of the state vector can

be brought to zero in finite time, a constructive method exists for reformu-
lating the problem to that of bringing a single component of the state vector
to z ero.

Section 3 shows that if a finite number of flexure modes are sufficient to

represent the aeroelastic distortions of a flexible vehicle, the state vector of
an aerial vehicle can be measured with commonly available instrumentation.

An approximate method for removing the flexure effects for the rigid body

motion is also presented.
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Theory of time-optimal control of linear plants that can be represented

by linear differential or linear recurrence equations is presented in section 4.

Another state vector control theory is presented in section 5. It is shown

that it can be specialized to yield a method for computing trajectories for the

special time-optimal regulation problem where all components of the state

vector are driven to the origin. Alternatively, it permits computation of

trajectories for driving all components of the state vector to the origin under

an amplitude restriction on one of the state vector components if the forcing
function is not restricted.

State vector regulation with an average power constraint on the forcing

function is considered in section 6. Besides having merit in its own right,

the method is shown to yield a good approximation to several kinds of time-

optimal regulators.

Most aerial vehicles do not require the performance that can be achieved

with state vector control. Section 7 presents some approximation methods

so state vector control theory can be used to obtain adequate performance

without inordinate complexity.

In section 8 a method is presented that provides a feasible mechanization

for time-optimal regulators.

The self-evaluating and adaptive control problems are considered in
section 9.

/
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THE THEORY OF TIME-OPTIMAL CONTROL OF LINEAR SYSTEMS

By C. A. Harvey and E. B. Lee

SUMMARY
/

An open-loop time-optimal regulator problem is considered for plants

that can be represented by linear differential c_ linear recurrence equations.
The problem is treated in sufficient generality to encompass both single- and
multiple-component regulator problems. Uniqueness theorems are proved in
order to derive necessary and sufficient conditions that an optimal control
must satisfy.

In the discussion of differential equation systems, the single component
control problem is considered first. It is shown that this problem gives rise

to a target set which is compact and convex. This set is contained in a p-
dimensional subspace of the phase space and has an interior relative to this

subspace. The dimension p depends on the particular problem. If p is greater
than two, it is not possible, in general, to obtain explicit formulas for the
boundary of the target set.

While the control problem considered here is open loop, it is clear that
open- and closed-loop trajectories coincide when the time-optimal criterion
is used. Thus the uniqueness theorems provide the conditions required for
open- or closed-loop control. The main result is that the control must satisfy

Pontryagin's maximum principle with the associated transversality condition.
For second-order systems explicit formulas for closed-loop control can be
obtained. A second-order example is presented.

For plants represented by linear autonomous recurrence equations, the
control problem analogous to that considered for plants represented by linear
autonomous differential equations is considered after the elementary theory
of linear recurrence equations is presented. The results for recurrence
equation systems are analogous to those obtained for differential equation
systems.

INTR ODUC TION

The all-component time-optimal control problem has been studied by
various authors. For linear systems the resulting theory is quite advanced.
The single- and multiple-component time-optimal control problems have not
received such wide attention. These problems provide the motivation for the
development of the time-optimal control theory given below.
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For systems represented by linear differential equations it is shown in
section 2 (MH MPG Report 1529-TR2) that multiple-component time-optimal

regulation can be accomplished by a single-component time-optimal regulator.

The single-component time-optimal regulator problem is reformulated below
so that it is in the form of the general problem statement given subsequently.

The all-component time-optimal regulator problem may also be stated in terms

of the general problem statement.

Background results are given for this general oroblem. Then theorems

concerning the uniqueness of optimal and extremal controls are proved. The

methods of proof are based on geometrical considerations.

Systems represented by linear recurrence equations are then considered.
For such systems a time-optimal control theory is developed which is analogous
to the theory developed for systems represented by linear differential equations.
Before the control problem is considered, the elementary theory of recurrence

equations is developed for completeness of the presentation.

SYSTEMS REPRESENTED BY LINEAR DIFFERENTIAL EQUATIONS

In section 2 it is shown that any multiple-component time-optimal regula-

tor problem for a linear system with a single control variable is equivalent

to a single-component time-optimal regulator problem. For this reason,

only the single-component regulator problem need be considered.

For the general problem statement given below, which encompasses the

single-component time-optimal regulator problem, it is shown that if the

hypotheses of theorem 2 are satisfied then Pontryagin's maximum principle
and associated transversality condition form necessary and sufficient conditions

that are to be satisfied by an optimal control. Thus, the character of optimal

controls is given and a set of transcendental equations may be obtained. The

solution of these equations defines the optimal control.

Single-Component Control Problem

This problem may be stated in the following manner: Let c(t) represent

the component to be controlled and u(t) represent the control variable where

c(t) and u(t) are scalars. Suppose that u(t) is constrained to satisfy lu(t)l<__1

and that c(t) and u(t) are related by the linear differential equation

n (i) m

_. aic (t) = _ b.u (j)• J
i=0 J=O

(t)

where m <___n, a i, b.. constants, a n tb_nd i. Then the single-componenttime-optimal regulator problem is u(t) for t > 0 satisfying ;u(t)l <.1

(I)

C
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such that c(t) = 0 for t
initial conditions c(i) (0)

l..... m-l.

> T where T is a minimum for any given set ?fj= Co(i), u(J)(0) = Uo(J), i = O, 1 ..... n-1 = O,

It should be noted that c(t) = 0 for t > T if, and only if, c (i) (T +) = 0,

i = 0, 1, ..., n - 1 and u(t) satisfies u(t)] < 1 and

b.u (j) (t) = 0 (2)

for t > T. Let G be the set of points in Euclidean,v0-space with coordinates

• , gm such that the solution of (2) withu_J) (T ÷) = gi+l, j = 0,gl, g2, g i

1 satisfies u(t) I < 1 for t > T. Evidently G is coJmpact, convex,1, .... m-

and nonempty.

Now a transformation will be introduced to transform equation (1) to the
vector form

k = Ax + Bu

where A and B are nxn and nxl constant matrices,
lem will be reformulated in terms of this system.
j = 0, 1,..., m- 1 be defined by the equations

respectively, and the prob-

Letaij, i = 0, 1, ...,n;

n

_. _ij ai = b j,
i=o

j = O, 1, ..., m - 1

= 1 _. = O, i < n- 1
n-l, m-i ' l,m-I

(3)

ai+l,j+l = aij, i = 0, 1 ..... n - 1, j = O, 1, ..., m - 2

The_ ai_ represents the jump in c (i) (t) caused by a unit jump discontinuity
in u J) (_); i. e.,

• . : c (i) (t +) - c (i) (t-)
13

(4)

when

u(k) (t+) - u(k) (t-) = 5kj



where

5kj
= 1 if k

= j and 6kj
= 0 if k/

Introducing

m-I

I ..u (j) (t), i --Xi+l(t) = c (i) (t) - crzJ

j--o

O, I..... n- I

equation (1) becomes

ki(t) = Xi+l(t) + ai, o u(t)' i = 1, 2 ..... n- 1

n-1

Xn(t) = - .I aixi+ 1 (t) + _n,o u(t)
1=O

Initial conditions transform according to equation (5).

The conditions c (i) (T +) = 0, i = 0, 1,..., n - 1 give

(5)

(6)

m-i

_ .u (j) (T+), i =
Xi+l(T +) - /. i3

j=o

o, 1,..., n- 1 (7)

from (5), but each xi(t) is continuous so that x i (T +) = xi (T) = x i (T-). Equation (7)
defines a linear mapping, L, of an m-dimensional vector space into an n-
dimensional vector space. Let G be the image of _ under this map, i. e.,
G = L_ r. Then the condition c(t) = 0 with u(t) satisfying lu(t)l <__ 1 for
t > T is equivalent to: x(T) is in G and u(t) is the solution of equation (2)
for t > T with u(J)(T +) satisfying equation (7). Thus the single-component

time-optimal regulator problem is reformulated as follows: Given the system
described by equation (6), for any set of initial conditions it is desired to:

a. Choose u(t), satisfying [u(t)[ <__ 1 for 0 <__t < T, such that the
corresponding x(t) reaches G at t = T where T has the property
that for any u(t) satisfying[u(t)l <__ 1 for 0 <t <__T the corres-
ponding x(t) is not in G for t < T.

b. For t > T let u(t) be the solution of equation (2) with u(J)(T +)

satisfying equation (7).



If the solution for (a) is found, there is a solution for (b) because of the defini-
tion of G. This solution of (b) is uniquely determined by x(T) and is given by

u(t) = 0 if m = 0 and u(t) = -Xn._l_m(t) if m > 0 wherexn+l-m(t} is

determined by

• = -o. x i = 1, 2, . n- 1
kl Xi+l 1, o n+l-m' "" '

n-1

k - _. n, o Xn+l-mn aixi+l -a
1=0

(8)

with initial condition x(T) which is given by (a).

Remark: Although G and G are well defined, it may be impbssible to obtain explicit
formulas for their boundaries. If the dimension of Gis less than three, ex-

plicit formulas for the boundary of G can be obtained.

General Problem Statement and Background Results

Consider the autonomous linear control problem P:

n m

=Y %x bikUk;i: 1,2
j=l 3 =1

the nor/empty restraint set l-I = {u 1, ..., Uk):

the initial point x ° = {Xlo, X2o .... :Xno) •

the constant, compact,

n (9)

[Ukl <l,k = 1_ 2,...,

R n ,

convex target set is G • R n,

the cost functional of control C(u) = t I.

The problem of optimum control is to select u(t) = [ul(t), u2(t), ....U4n(t)]

from i2for each t, 0 < t < tl, such that x(t) = [xl(t), x2(t), ...,Xn(t)j

moves from x(0) = xo to a--nintersection with thdtarget G in minimum time

tI = C(u). Acontroluis called optimal in case C(u) <_% C(_) for any admis-
sible control fi e A, where Ais the class of all measurable controls u(t) e i2

on various time intervals 0 K t 5 t' which " steer" x(t) from x o to G.

Pontryagin (ref. I).,et al. have shown that a time-optimal control is

necessarily extremal; that is

i. There exists an absolutely continuous vector that is nowhere zero,

rT(t) = [_l(t), r72(t), ...,nn(t) ]

on t o 5_t <__tl such that x(t), rT(t), u(t)

$
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satisfy the differential equation system

OH

I Dr7i

-" OH
_i = 8x. ; i = I, 2...n

1

(I0)

2. H n(t), x(t), u(t = M (t), x(t) for almost allt on to _ _ ,

where

H = Z Ni aij x. + Ni Uk
i=l j=l J =1 =1

(II)

and

M(rL x) = Max H(_, x, u)

uc_

3. M[_(to), X(to) ] = M[_(t), x(t)] > 0 for all t o <_t _< t 1 and
any _(t), x(t), satisfying conditions 1 and 2..

(12)

(13)

For certain of the results given here, it is necessary to assume that
system (9) satisfies the following condition:

Definition: System (9) is called normal if the vectors Bw, ABw, .... A n-I Bw

are linearly independent, where w is a vector having the direction of an edge
of the polyhedron _ (or along _ itself if _is just a line segment).

If system (9) is normal, there is only one point u e _2 at which

? ?F(u) = Ni bik Uk
i = 1 k = 1

assumes its maximum for almost all t (see for example Pontryagin, (ref. 6)
Thus, if T?(t) is known, the control u(t) is uniquely determined and is given by

Uk 4
of in vector notation u(t) = sgn [N(t) • B] for the normal system (9)*. It is
desired to establish results con'cerning-the uniqueness of the controls of the
form (14) for the problem P.



Rozonoer (ref. 2) has shown that the vector _(t) for the optimum control

progrm P must also satisfy a transversality condition; that is, when x(T)cSG,
the vector _(T) must be normal to a supporting hyperplane of the set G at the

point x(T) and directed into the halfspace containing G. (The necessity of this
condition for optimal control is obvious from lemma 5. )

Uniqueness Theorems

As is well known (ref. 3) the solution to equation (9) can be written as the integral

equation

t A(t_s) B
x(t) eAt + e u(s) ds, x = x(O)

= X O O

0

and the solution to equation (I0) as

n(t) = e-A't no' r/o = r/(O)

where eAt = I +tA + (t2A2/2 ') +..., and ' indicates transpose.

For each t k 0, let

K(t,x o) = [x:x
At

= e x +
O

t

/ A,t.> ]e B u(s) ds, u(s) allowable

O

It is desired to establish certain properties of K(t, x o) for the normal systems
which will be of aid in proving the existence and uniqueness theorems. Evidently

(ref. 4) K(t, XQ) is compact and convex, and the boundary of K(t,x o) denoted by

8 K(t, x o) is glven by

t

[ +/ eA,tS,os.n,. I]aK(t,x o) = x:x = eAt x° o

Lemma 1. - For each _(t)with I%11= 1

Ixj s1rT(t)- (e At ) o + e-ASB sgn [nls)- B1 d
O

for ali _K(t, Xo), and equality holds only if

_ = eAt + e-ASB sgn rT(s).
O O

_>n(t) •

B] ds_ for the normal
system (9)

If _(t) is any nontrivial solution of equation (10), then _(t) •

number of zeros on 0 _< t_%< t 1.

B has a finite

lJ
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Proof:

o(t) .
At

e +;o'  st-
Ejo sl Ejo= r7° • e sgn (rl° • e d - _)o"

_t[_ _ASB _ASB _ASB ]= o • e sgn (r_° e )-n ° • e u(s) ds

-ASB s-j
e u(s) d

t m m

/t[Ifi(s)l - fi(s)ui(s)]ds
" O

where fi(s) = ith component of the row vector Uo • e-AsB. But

Ifi(s)I- fi(s)ui(s) >_Ifi(s)l-lfi(s)ui(s)I>__Ifi(s)l-lfi(s)l: 0 for i : i, 2.... m.

Therefore,

m .t

If equality holds, then for i = i, 2 .... m

/o'El_l - ,_s_u_sl]_s_ 0

which implies Ifi(s)I = fi(s)ui(s) a.e. , on (O,t) since Ifi(s)l- fi(s)u,(s) _> O.
Since the_system is normal, Ifi(s)l= fi(s)ui(s) a. e. , on (0,t) implles u_i(s)

sgn[fi(s)] a.e. on (0,t) which gives

= eAt Xo +/t eA(t_S)B sgn [_(s) • Bids

O

Lemma 2. - The boundary of K(t,x o) contains no line segments for the normal system (9).

Proof: Suppose the boundary of K(t,x o) contains a line segment L joining the
points x I and x 2. Choose a supporting plane, 7r, to K(t,x o) at x I containing L
and take nto be the unit vector normal to =directed into the halfspace not contain-
ing K(t,Xo). Then _. x I = N. x 2 and xl # x 2. Hence there exists x3¢K(t,x o)

12
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• 3such that rT" x3 > rT" x I, i.e., x lies on the opposite side of _r from the set

K(t, Xo), which is a contradiction because 7ris a supporting plane to K(t, Xo).

Lemma 3. - Consider the sets K(t, Xo), 0_<t <t . Corresponding to eachc>0

a" 6 > 0 sucl_ that d_, _(t, Xo)] < c(d as defined below) for each

p_K(t*,x o) and all t* - 6 <t_<t '. J

Proof: Let peK(t ,xo) and qcK(t, Xo) , 0 <t <t . Then there exists admissible
Up(S) and uq(s) defined on the intervals (0,t*) and (0,t), respectively, such that

tAsup,s,At * + e B d
p = e X O

and

f Jot q(S) ]

At - A.s
q ; e Xo+ e Bu ds

Let

[jote-As= At + B Up(S) dqp e xo

Then

qpeK(t,x ) and d!p,K(t, xo)J= mini P- ql < i P- qp
o qeK(t, x o)

But

Ip-qpll = Ille A(t':_-t)-I 1 [eAtxo +_o t eA(t-S)Bup(s)ds]+I t

Thus,

eA( t*- S)Bup(s)ds

d[p, K(t, Xo)]< eA(t*-t)-II! ( leAtxoll +II_ot eA(t-S)Bup(s)dsli + Ii

is continuous in [0, t*].

= max I1

which exists since IleAtxo_

-4

teA(t*- S)Bup(s)ds I
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There is a C
2

O

for all t c

such that

eA(t-s)Bup(s) ds II -< C2

[0, t*] and all admissible Up(S)defined on [0, t] since

t eA(t-s) BUp ds • K(t, 0) C K(t*, 0)

O

which is compact (ref. 5).

Also there is a C a such that
and Up(S) admissible.

Hence,

Xo ]-<I

lie A(t*-s) BUp(S) II < °3foralls [0,t*]

eA(t*-t) -I I (C 1 + C 2) + (t*- t) C 3

for each p • K(t*, Xo).

The right side of this inequality is continuous in t and takes the value zero
when t = t*, thereby establishing the lemma. Thus, the sets K(t, x°),

0 i t _< t* satisfy the hypotheses of the following lemma of ref. 5, page 6:

"Lemma 3.- Consider sets A(t) of R n, t <_ t*, with the following properties:

a. Each A(t) is convex

b. Corresponding to each • > 0 there is a 5 > 0 such that d[p, A(t)]
< • for each p • A(t*) and allt* -6 < t < t*. Then, if q is in

the interior of A(t*), there is a t 1 < t* such that q is an interior
point of A(tl). "

Theorem i. The uniqueness of the optimal controls for the problem P is

established by the following theorem: Let there be_given a compact, convex
set G of R n. For the normal system (9) suppose ul(t) and u2(t) are such that

the corresponding trajectories initiating at x(0) = xo intersect G time-
optimally at t = t*. Then

ul(t) = u2(t) a.e. on (0, t*)

Proof: Let xi(t) d_enote th " . i .e solutzons corresponding to u (t) for 1 = 1, 2.
Then xl(t *) and x_'(t *) are on the boundary of K(t*, x °) and aIso on the boundary
of G. Assumexl(t*) # x2(t*). Then the line segment Lwhich joins xl(t *)to
x2(t*), is aIso in G and in K(t*, x°). If any point of L were an interior point

.#
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to K(t*, x°), it would be interior to K(t, x°) for some t < t* which gives a

point of G attainable for t < t* which contradicts the hypothesis. Therefore,

L must lie _n the boundary of K(t*, x °) which contradicts lemma 2. Thus
x 1 (t-.') = x_(t*). Hence by theorem 4 of Pontryagin's paper {ref. 6), ul(t)--u2(t)
a.e. on (0, t*).

Further properties of K(t, x o) are given in the following lemmas _

Lemma 4. - Let _o c K(t, Xo).

If

tO

F t

= eAt / -As B i -ASB) ]
X o + e sgn (7 o • e dso j

for i = 1, 2, then

sgn (701 • e-ASB) = sgn (702 • e-ASB), 0 < S <

a.e. for the normal system (9).

Proof:

t _ASB 2 -ASB s]e sgn (r7° • e ) d = 0.

O

+

Then

1
r7o fot -A s B 1 -A 1• e sgn (r7° • e SB) ds - 70

_o e-ASB sgn (702 • e-ASB) ds = 0

or

fo t ] 1 -As B ft
7° • e ds = Jo

1 -As B 2
_?o • e sgn ( r_° • e-ASB) ds

C"
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This implies that

sgnir}ol • e-ASB) = sgn (rTo2 • e-ASB)

a.e. for the normal system (9).

Lemma 5. - For each point

-A 't
on the boundary of Kit, xo) where IIr7o II = I, Nit} = e

normal at _(r}o).

r_° is an exterior

Proof: _(t) [_(Uo) - x] = 0 is the equation of a hyperplane, 7r,passing

through _0(r}o), which is orthogonal to _(t). From lemma I, r_it) • [_(Uo) - _0]

>__ 0 for all w in Kit, Xo); therefore, 7rsupports Kit, Xo). From the sense of
the inequality it is clear that _(t) has the direction exterior to Kit, x o) at WiUo).

The uniqueness of the extremal control for the problem P is provided by
Theorem 2.

Theorem 2, - Consider the control problem P. Let u c Abe any control
function satisfying equation (14)where _(t) satisfies equation (i0)and the
transversality condition. If G{%[Kit, Xo)-0K(t, Xo) ] _ _ for all t > t* where

[ ]
t* = inf ]C(u)|

u_A
L J

then uit) is the unique optimal control for the normal system (9).

Proof_ Consider a common supporting hyperplane rr,:, to the sets G and KIt*,Xo).
Let rT(t*) be a vector normal to _r* directed into the halfspace containing G. By
theorem 1 and lemmas 4 and 5, r_it*) uniquely determines the optimum control
u*lt). It is desired that u'it) is the only extremal control which steers x o to G
and satisfies the transversaiity condition. (It is only necessary to consider
boundary points of G in Iooking for optimal controls. ) At a point x(t) on
OG, r)(t) is normal to a supporting hyperplane of G at xit) and directed into the
halfspace containing G. (This is the transversality condition. ) For xit) on
0Kit, Xo), rTit) is normal to a supporting hyperplane of Kit, x o) at x(t) and is
directed into the halfspace not containing Kit, Xo), according to lemma 5. '
Consider any time t I > it* at which K(tl, x o) and G again have a common
supporting hyperplane 7¢. r_it 1) must be normal to _and be directed out of
the haIfspace containing Kitl, x o) into the halfspace containing G. This is
impossible since the two convex sets G and Kit 1, x o) must be on the same
side of 7ri if G(% [Kitl, x o) - 0K(tl, Xo) ] # q_. Therefore, t I _< t*, but t*

is the first t for whichx(t) is inG, so t 1 = t*.

I *Remark.: GO K(ti, x o) - _K(ti, x o _, t i >t for the problem P if the
vector k is directed into the set G for every point on the boundary of G for some
choice of u • _.

!
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Synthesis of the Optimum Control

It has been demonstrated by Lee and Markus {ref. 7) (also by Pontryagin,

ref. 8, for the linear problem) that if the set & is nonempty*,an optimum

control will exist for the problem P. Obviously, the set A is nonempty for

any x o in R n if G contains the origin in R n and if the matrix A of the normal

system (9) is stable (i.e., if all of the roots of[A - k I I= 0 have negative
real parts). This follows from theorem 7 of rel. 6 or the corollary on page

6 of ref. 7. Since anything which can be done with allowable control can also

be done with optimal control, the synthesis procedure to be outlined will pro-

vide the domain of controllability, that is, the set of points (initial conditions

x_) from which the set G can be reached using allowable control. This will
th_en completely answer the question of existence.

Theorem 2 is of interest in solving the synthesis problem. The procedure
used is the same as that suggested by LaSalle in ref. 8. It is assumed that
system (9) and set G satisfy the hypothesis of theorem 2. Then system (9)

can be started at points on the boundary of G, and s_fstem (I0) and equation
(14) can be used to determine the control function u(t), observing the solution
as t decreases (replace t by -t) for the various allowable initial conditions
on n(t)as determined by the transversality condition with II _n II = i. The
control function as determined is then the optimal control i_or-all' points x(t)
which can be attained in this manner. This is then a constructive procedure
for determining the switching surface, where the components of u(t) change

signs as functions ofx = (Xl, x 2 ... Xn); that is, u as u(x I, x 2 ... x n) for
the control problem P.

As an example, consider the second-order problem:

kl = x 2 + u

k 2 = -x 2 + u

(15)

_: - 1 <u < 1

C(u) = t 1

G = [(x 1, x2): xl(t) = 0 for allt > 0 with u(t) • _2

wherext(t) is a solution of (15) withxl(0) = x 1, x2(0) = x2]

The problem _tatement is: find u(xt, x 2) so that [xl(t), x2(t) ] moves from any

point x o e R" to the target G; moreover, in going from x o to G, C(u) attains
the smallest value with respect to u ¢ A.

The condition that x(t) be bounded for all responses corresponding to u(t) in
A is automatically satisfied by the linear system (9).

1"4
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To apply the previous results• convexity must be established for G and
the boundary of G must be found. A constructive procedure for doing this is
outlined in ref. (9). The method described earlier in this report under the

discussion of single-component control could also be used. Since xl(t) is to

be 0 for t > 0thenkl{t) = 0 for t > 0. This implies that u = -x 2 for

t > 0 with luifi_ I. Thusk 2 = 2 x 2 and Ix2i _ ifor allt >•.0. Consider2t
the points x 2_ for which thiswillbe true for t 0. Becausex2_) = X2o e •
any x 2_ for w_ich Ix2ol ___ 1 is satisfactory. Therefore, G is just the line

segment x I = 0, 'Ix2' < I. The target G is certainly compact, convex• and
nonempty. It has also'b-een demonstrated that GO[K(t, x o) - 0K(t• Xo)] _ ¢
since for any point of G it is possible to pick u = -x 2 for t > 0, which is not
an extremal control and must lead to a point interior to K(t, x o) for t > 0.

The previously outlined procedure will be used to solve for the optimum

controlu as U(Xl, x2). Consider

H = _I x2 + (-72) x2 + (_l + _2 ) u•

where

OH
i

"_I = - " 8x
- O,

0H

f72 - 8x 2 - r_l + r_2

u = sgn (r71 + r72)

fromwhichthecontrolisuniquelydefined a. e., sinceBw = [11

[ j1
are non-collinear. Substituting for u,
obtained with t = -t:

and ABw =[-i_ lj]

the following equation systems are

- :k 1 = x 2 + sgn (rl 1 + _2 )

- k 2 = x 2 + sgn (_?1 + 72)

- _I = 0

- _2 = -N1 + 72

Let Nlo cos 0 _72 = sin 0 with 0 < 0 < 2_. Therefore, Nl(t, 0)
constant _1o = cSs 0 and

N2(t, 0), = (N2o - Y?lo) e-t + Nlo = (sin 0 - cos 0) e -t + cos 0,

0 < 0_< 2_.

If
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Let v(t, 0) = _[(t, 0)+ r72(t,8)and u(t, 0) = sgn v(t, e). Consider
v(t, 0) and the point (0, I) of G. Any line through the point (0, l) is a support-

ing line to G. For this point, allowable values of 8 to satisfy the transversality

conc]4tion are 7r < 0 < 2=. Calculate u(t, e ) along solution curves IxI (t),

x2(t)j starting at(0, 1) for = <_ _ <_ 2 =.

u(t, 0) = -1 for = _ O % 3/2 =, allt > 0

and

u(t, 0) = + 1 for 0 = 27r

For each 3/2= <_- 0 _- 2% the zeros of v(t, O) occur at only one time, tllwhich attains all values between 0 and 0c for 3/2z _ _<_ O __ 2rr; u{t, 0) is - for

t in (0, t 1) and + 1 for t in (tl,oC}. Therefore,

= [xl(t)' x2{t): _1 = -x2 + I, k2 = x2 + 1 withxl(0) = 0, x2{0) = 1, t>0 

constitutes the zeros of v(t, O) in thex , x 2 plane for 7r < 0_< 2=, allt> 0,
for optimum solutions to the point,,(0, 1_. For the point {0, -1) of G,pis re-

flected through the origin to find F' the zeros of v(t, 0) in the xl, x 2 plane
for 0<0_< % t> 0.

Finally consider points of Gwith[x21< i. Here 0 can onlytake the values
0, % 2=; but u(t, 0) has no zeros for 0 = 0, % 2% allt>^0. Therefore, the

zeros o_fv(t,0 ) in the x l, x 2 plane are exactly the set_Ur It is easy to see

that p,_ and the line segmentjx21 <- I, x I = 0 form a line which divides the

xl, x2Plane into two parts. On one side of this line sgn (_I + r72)is -l, on

the other +I, but this gives u as U(Xl, x_). Figure 1 shows the switching
boundary and typical optimum solutions for this example.

SYSTEMS REPRESENTED BY LINEAR RECURRENCE EQUATIONS

As an approximation to optimum' control of certain processes described
by differential equation models, it has been suggested that recurrence equation
models be considered. The study of the control of these equations is of value

in its own right owing to the connection with various physical phenomena such
as biological and economic processes. The degree of approximation to differential
equation models is not known and is perhaps most easily determined by experi-
ment. Concern here is only with the development of procedures for construct-
ing the control function after the problem has been suitably set and only for the
linear recurrence equation.

Similar problems have been considered previously (refs.11, 12,13) and have
led to results for time-optimum control to the origin. When the target is not
the origin (for example, when it is a convex set), new methods must be used.
The results presented here permit the generation of optimum trajectories in

the same manner as for processes described by differential equations as con-
sidered above.

1£
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Reeurr enc e Equations

Consider the real linear recurrence equation :

xi(r+l) = Aij(r) xJ(r)+ Bik(r)uk(r)

where

k

i,j

r

(16)

= 1,2,...m

= 1, 2, ...n

= 0, 1,2...

[or in vector form x(r+l) = A(r) x(r) + B(r) u(r), r = 0, i, 2 .... _ Here r
t
denotes the stage in the evolution of the process. It is easy to show that (16)

encompasses real scalar equations as in the case of differential equations.

First, for the real scalar equation:

x(r+n) + al(r) x(r+n- I) +.. +an(r) x(r) = y(r); r = 0, I, 2.... an(r) _ 0

r= O, 1, 2, is the first component of the vector solution of

2
= x (r)

3
= x (r)

the solution x(r),

the system

xl(r+l)

x2(r+l)

xn(r+l) = x(r+n) = -al(r) xn(r) -a2(r) x n-l(r)+..-an(r)xl(r) + y(r)

Second, for the real scalar equation :

x(rt-n)+ al(r) x(r+n-1) +.. + an(r) x(r) = bl(r) y(r+n-1) +b2(r)y(r+n-2)+

... +bn(r) y(r)

the solution x(r), r = O, 1, 2,.._with initial data Ix(i), x(i+l), ... (x(i+n)]

and an(r) } 0 is the first component of the vector solution of the system

1
x (r+l) = x2(r) + hl(r) y(r)

3
x2(r+l) = x (r)+h2(r)y(r)

xn(r+l) = _al(r )xn(r) _a2(r )xn-l(r)- ..-an(r )xl(r)+ hn(r) y(r)

26
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r = 0, I, 2... Here the hi(r) are found by elimination from the previous
equations. This procedure is illustrated by considering a second-order example.

Consider the real second-order scalar equation:

Let

and

x(r+2) + al(r) x (r+l) + a2(r) x(r) = b

x(r) = xl(r) + ho(r) y(r)

l(r) y(r+l) + b2(r) y(r)

xl(r+l) = x2(r) +hl(r) y(r)

x2(r+l) = -al(r) x2(r) - a2(r) xl(r) +h2(r) y(r)

From Equation (17)

xl(r+l) = x(r+l) - ho(r+l) y(r+l) = x2(r) +h

therefore,

x2(r) = x(r+l) - ho(r+l)y(r+l) - hi(r) y(r)

Iterating one step,

x2(r+l) = x(r+2) - ho(r+2) y(r+2) - hl(r+t) y(r+l) = - a

+ h2(r) y(r)

Thus,

x(r+l) = x2(r) + ho(r+l) y(r+l) + hl(r) y(r)

and

x(r+2) =

l(r) y(r)

(17)

(18)

(19)

l(r) x2(r) - a2(r) xl(r)

(20)

ho(r+2) y(r+2) + hl(r+l) y(r+l) - al(r) x2(r) - a2(r) x (r) + h2(r) y(r)

(21)

Multiplying equation (17) by a2(r) , and equation (20) by al(r) and then adding
these two to equation (21),

x(r+2) + al(r) x(r+l) +a2(r) x(r) = ho(r+2) y(r+2) +hl(r+l)y(r+l) - al(r) x2(r)

- a2(r) xl(r) + h2(r) y(r) + al(r) x2(r) + al(r) ho(r+l) y(r+l) + al(r) hl(r)y(r)

+a2(r) xl(r) +a2(r) ho(r) y(r) = bl(r) y(r+l) +b2(r) y(r)

21
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Since y(r), y(r+l), and y(r+2) are linearly independent (by assumption), the
coefficients of each of these terms must equal zero; i. e.,

ho(r+2) = 0

hl(r+l) + al(r) ho(r+l) = bl(r)

and

h2(r) + al(r) hi(r) + a2(r) ho(r) = b2(r)

Therefore,

hl(r) = bl(r-1 )

and

h2(r) = b2(r) - al(r)bl(r-1)

The equation system is

xl(r+l) = x2(r) +bl(r-1) y(r)

x2(r+l) = _al(r )x2(r) - a2(r )xl(r) +[b2(r) - al(r) bl(r-1) ] y(r)

with initial data xl(0) = x(0), andx2(0) = x(1) - hl(0) y(0)

Hereafter, solutions will be considered only for the system of _equati0n (16)
since the above shows (16) is sufficiently general to encompass real scalar

equations. Some general results will now be presented concerning the nature
of solutions of (16). In particular, a variation-of-parameters formula is given
in theorem 6.

Consider the homogeneous equation

x{r+l) = A{r) x(r); r = 0,1,2...

The set of all solutions forms an n-dimensional real vector space. Writing
ix) = x(0), x{1), x(2).., for the solution with initial data x{0),

a(x) +b(E) = ax(O,) +b K(O), ax(1) +b_(1),..,ax(n) +bK(n),..

The solution a (x) + b(X) = 0 if and only if ax(0) + b_(0) = 0. Therefore, it is
necessary to find a basis only for the initial vector x(0). Note also that an nxn
real matrix W(r) is a solution of W(r+l) = A(r)W(r), r = 0, 1, 2 .... if, and only

if, each column of W(r) is a solution of the vector equation x(r+l) A(r) x(r).
A matrix solution W(r) with W(0) nonsingular is called a fundamental matrix
solution.
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Theorem 3. - Consider the homogeneous real linear equation

x(r+l) = A(r) x(r) inR n

r = 0, l, 2... A set of n solutions is a basis for the space of solutions if,
and only ii_they form the columns of a fundamental solution matrix.

Proof:

Then

Let

W(r) = [x(1)(r), x(2)(r),...x(n)(r)]

x(1)(r), x(2)(r), ...x(n)(r)

form a basis of solutions if, and only if,

independent; that is, W(O) is nonsingular.
x(1)(0),x(2)(0)...x(n)(o)] are linearly

Remark: If W(r) is one fundamental solution matrix, then all other fundamental

solution matrices are just W(r)C, where C is a constant nxn nonsingular matrix.

Proof: First show that W(r)C is a solution; i. e., it satisfies the recurrence

equation.

W(r+l)C = A(r) W(r)C; r = 0, t,2...

Now let Y(r) be a fundamental solution matrix.

IY(o>l/0
and

Y(O)Y-I(O) : I

Then

Choose

-I
C = W (0) Y(O)

then

Y(r) = W(r)C = W(r)[W-I(o)Y(O)]

and

Y(0) = W(0) [W-I(0) Y(0)] = Y(0) Q.E.D.

Remark: W(0) = I, W(1)= A(0), W(2) = A(1)A(0), W(3) = A(2)A(1)A(0) ....
W(r+l) = A(r) A(r-1)...A(1)A(0) .... is a fundamental solution matrix.

23



2O

If A is a constant matrix, a basis of solutions can easily be found. Consider
x(r+l) = Ax(r) with A a constant nxn real matrix. Then from the above remark,

W(r) = (A) r is a fundamental solution matrix. If P is any nonsingular n_atrix,
then y(r) = (PAP- l)r is a fundamental solution matrix of z(r+l) = PAP- Iz(r).
If A is similar to a diagonal matrix (say A is symmetrical) there exists a P
such that

PAp-1 = D = diag (11,)_2,..., Xn)"

Each column of

p-l(D)r = p-1 diag(xlr ,t2r ,...xn r)

is a solution of x(r+l) = Ax(r). The most general solution is an arbitrary linear
combination of the columns:

z(D(r) = )tlr z(2)(r) = 0 ... z(n)r -- 0

0 x2r •

0 0 .

0 • •

0

0 0 X r
n

that is,

ClZ(1)(r) c2z(2)(r ) z(n)(r)z(r) = + +...+ cn

Another method of solving for the constant case is to assume a solution
and see if it is possible. Assume that ?trv is a solution where v is a non-zero
constant vector. Then substituting in the recurrence equation, X must be such
that

xr+l I Iv = Axrv or A-XI = 0

Any root X. of this equation leads to a solution x(r) X. r= v.. If these roots are

distinct, tt_e most general solution is 1 1

lXl r )t2r ... X rx(r) = c +c2 + + Cn n

2 _
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A result concerning stability for the constant coefficient linear recurrence

equation is given in theorem 4.

Theorem 4. - Consider the real autonomous recurrence equation

x{r+l) = Ax{r) inR n

If every eigenvalue of A has a modulus less than I, A is called a strict con-
traction and the origin (0) of R n is asymptotically stable (i. e. , 0 is the unique
critical point and every solution tends to this point as r increases).

For the nonhomogeneous equation, theorem 5 applies.

Theorem 5. - Consider the real recurrence equation

x(r+l) = A(r) xlr) + B(r),ulr)

r = 0, 1, 2... in R n. Let x(P)(r) be a solution. Let x(1)(r), x(2)(r), . . . x(n)(r)

be a basis of solution for the corresponding homogeneous equation.

x(r+l) = A(r) x(r)

Then the most general solution is

x(r) = ClX(1)(r) + c2x(2)(r) + ... + Cnx(n)(r) +x(P)(r)

r = 0, I, 2...

Proof: Let x(P)(r) and _(P){r) be solutions of

x(r+l) = A(r) x(r) +B(r) u(r)

(P)
then x

r
- _:(P)(R) is a solution of the homogeneous equation, that is,

(P ix(1)(r) 2x(2)(r) x(n)(r)x )(r) - _(P)(r) = c + c + ... + cn

Theorem 6.- Consider

x(r+l) = A(r) x (r) + B(r) u(r)

r = 0, 1, 2... in R n. Let c be a given real constant n-vector. Then the unique
solution with x(0) = c is

x(r) = W(r)c + W(r)

r

W- 1

j=l
(j)B(j-I) u(j-l)
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Note thatW(r) = A{r-1)A(r-2),... A{0) and

W(r) w-l(j) = A(r-1). A(r-2)...A(0). A-I(0)...A-I(j-I) = A(r-l). A(r-2)..A(j)

Proof: This variation-of-parametersformula is proved by induction. For
r =0 x(0) = c, and r = i; x(1) = A(0)c +B(0)U-(0). If this is assumed true for r,
then

r+l

W{r+l)c +W(r+l) Z w-l(J ) B{j-1) u{j-1)

j=l

= A{r) W(r)c +

A{r) W{r)

r

j=l

w-l{j) B{j-1) u{j-1) + W{r+l) w-l{r+l) B{r) u{r)

= A{r) x{r) + B(r) u{r) Q. E. D.

The Control Problem

Consider

a. The real linear recurrence equationx{r+l) = A{r)x{r) +

B{r) u{r) _{r), B{r)bounded] r = 0, i,2...

b. The restraint on the control O:

luk(r}I __ I, k = 1,2...m, r=0,1,2...

c. The initial datax = x{0) = x I{0), x2{0) .... xn{0).
O

d. The target set G as a convex, compact, nonempty subset of R n.

e. The cost functional of control C{u) = r.

The problem of optimum control is to select the sequence of numbers uk{r);

r = 0, I,2... from O at each stage r so that x{r) with x{0) = xo is a point of

G for minimum r. Later an equivalent definition of optimum control is given

which will provide a method for constructing the optimum control for this

problem.

Let W(r) be a fundamental matrix for the homogeneous equation x(r+l) =
A{r) x{r), with W{0) = I.
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Definition: The set of points

= = + W{r) W-I{j) u{j-1); u(j) allowablK(r,x o)
]=1

is called the set of attainability from x ° in r stages, r = 0, 1, 2 ....

The set K(r,x o) has the following properties.

.Lemma 6.- Consider the setK(r, xo), r = 0,1,2... For Mj) restricted to
_; K(r,xo) is a compact, convex, nonempty subset of'R n.

n

Prqof: Obviously K(r,xo) is_ non_mpty su_set of R . To show that it is convex,
let[u(0), u(1),.., u(r-1)] and [{](0), u(1),.., u(r-1)] be two controls with correspond-. _ L. A _ _'_ • •

zng responses[x(1), x(2),...x(r)]andIx(1), x(2),...x{r)]. Consider the points
on the line between x(r) and _(r). i.e." J

x(r) = kx(r) + (1-k)xA(r), 0 <_k <1

Each of these points belongs toK(r,x o) by use of the control sequence[ku(0) +

(1-k)2d(0), ku(1) + (1-k)£i(1) ..... ku(r-1) + (1-k)_u(r-1)]. Therefore, K(r,x o)
is convex.

To show that K(r, x o) is compact, consider the compact set

A = _2x f2x f2... x f2in R rm

Each point of A defines a control sequence [u(0), u(1) .... u(r-11
.T.

the linear function f on A to R n

u. Consider

r

f = W(r) _ w-l(j)B(j-1)u(j-1)+W(r) x=1 o

Then K(r,x o) = f(A)<:R n is compact by a well-known theorem about continuous
functions (see, for example, ref. 14, page 141).

Let

r

= + W(r) _ W
_o(_ o) W(r) x ° j= 1

(' indicates transpose).

,I"
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Lemma 7.- Consider r¥

nr _(n o) 2- n r •

= [W-l(r)] '% any non-zero vector in R n

for all _eK(r, x o)

Proof:

n r _{n o) - n r • _ = no

r

Xo =

r

+ jE [w-I(j)B{j-I_'%no " x° =1

W-I(j) B{j-1)]'N ° •

r

u{j-1)= 2 I[W-_'_ B(j-1)]'% I -
j=l

r

=1 [W-I(j) B(j-1)]'_°" u(j-1)

But term by term,

_-"_ _'_-_1',o1=[w-_,__,_-1)] ,% u(j-1)

for I u(j)l< 1. Therefore

r?r • _(r_o) > r¥ • , all _<K(r,x o)

Remark: If

1 0_(%1)[W- l(r)] l t0(r_o2)

1 and thenfor any two unit n-vectors r?o rTo2,

IIwII {Isgn -I(j) B(j_I) 'no 2 = sgn W- 2

j = 1, 2... r, except possibly when

1
IW-I(j)B(j_I)] '7 0 = 0

This shows that to go the farthest in any direction in R n, an extremal control

must be used; that is, equaltosgn[ ]whenever[ ]_ 0, and arbitrary in f_ at
other stages.

2_
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w

Definition: Equation (16) is called irrational of degree N if every n collection

of the vectors [w-l(j) B(j-I)] k k = 1,2...m; j = 0, 1,2...N, has span equal
to R n.

Theorem 7. - If equation (16) is irrational, there is a one-to-one correspond-
ence, for 0 <__r <__N, between points of 8K(r, x o) and the extremal controls:

u(j-1) = 1 if [W-I(j)B(j-1 l'rl ° > 0

-- _ _f[w-I(j)B(j__], _o : 0

- 1 if[W- I(j)B(j- l_'ri O < 0

j : ,, II oil : 1, lalS_

Proof: That each extremal control leads to a point in 0K(r, x o) is proved by
extending lemma 7. Suppose

u : [u(O), u(1), ... u(r-1)],

depending on rlo, was an extremal control which led to an interior point ¢0(r7o)
of K(r, Xo). Consider

rlr = [w-l(ri] 'rio

By lemma 7, _r ' ¢0(rl o ) ._> rir " _ for all _ eK(r, Xo). Therefore, to (rio)
cannot be an interior point and must then be inSK(r, Xo).

To show that the control u which leads to x(r)_aK(r, x o) is necessarily
extremal, let _r be any support plane to the convex set K(r, x o) at x(r)eaI_r, Xo).
Choose r}r to be a non-zero vector normal to _r and directed into the halfspace
not containing K(r, Xo) Compute.

_r Xr = _r

Therefore,

r

W(r)x o + W(r) Z

j=l

r

rio Xo = 1

r

Z [W-I(j)B(j-1)]' '0 u(j-i)
j=l

W- I(j)B(j- 1)] u(j- 1) rl r • to(rio )

sgn {[W-I(j)B(j- 1)]

r

j=l

11"/0 I -
rio" Xo +

r

[W-I(j)B(j-1)]' rio u(j-1)
j=l 2g
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uk(j - I)

whenever

= 1, 2...n

Since u(j-l) is in each component bounded by one,

sgn - I(j)B(j- I)] r_

o/ k _ 0

it is necessary that

in order to obtain zero for the above difference. Therefore, all controls

which lead tox(r)<0K(r, x o) are necessarily extremal.

Because each extremal control leads to a unique response (theorem 6),

it leads to only one point of the boundary of K(r, Xo).

It must now be established that for each point x(r)• 8K(r, xo) there is

only one extremal control. Let _, as above, be any support plane to K(r,
at x(r)•SK(r, Xo) and

r_r = [w-l(r)]' r_°

be a non-zero normal vector to 7r directed to the halfspace not containing

K(r, Xo). Consider

([W -1 I)]'x(r) = W(r)Xo + W(r) l [W-I(j)B(j-1)]v sgn % (j)B(j-

, ,o)V/o

xo )

a (j-l) 1 <__ 1W(r) Z [w-l(j)B(j-_)]vaV(j-_), I _

v,j:( )v= o

Since x(r) • _K(r, x o) such representation for x(r) is always possible.

_r _(%) = _r _(_o )'

_(_o ) = _(_o )

Suppose

3O
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Then from the remark following lemma 7,

1

sgn I[W (j)B (j -
k

except when

wher

t V {-1)] ' % = sgn IW 1

I rl0 = 0

r?r = [w-l(r)] I r_°

(j)B {j - 1)]
V

and

%
are both exterior normals to the support planes 7r and vat

co(n ° ) = w(_ o) = x(r)e0K(r, Xo).

It then only remains to establish that the equation

w-l(r)x(r)-x° -_' [W--I(j)B(j-1)Ir_. v sgn/[w-l(J

o

1, 2 .... r

< 1

V

has a unique solution in terms of the a {j-l). Because the system is irrational,
it is a system of n linear equations in _ <__n-I unknowns. Since a solution exists,

it is only necessary to show that it is unique. This is obviously true since any

n collection of vectors [W - I (j )B (j - I )] k k = 1,2,. m, j = 1,2 .... n forms a
basis for R n and therefore any f _< n-I collection "of these same vectors form a

basis for an _ dimensional linear subspace of R n.

To construct optimum control based on the previous theorem, it is advan-

tageous to modify the original definition of optimum control. To do this, a
dimension is added to the target set G:

G(a, r) = G{J Ix(r-l): x(r) = A{r-1)x(r-1) +B(r-1)u(r-1); x(r){ 8G, 0<[u(r-1)[

0 <__a <1
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Definition: The control [u(0), u(1), ... u(r-2)] which steers x to G(a,r)is
considered optimum in case C(u) = r-i + a is a minimum, o

Uniqueness of the optimum control is obtained in the following case.

Theorem 8. -Consider equation (16) irrational. Let

u = u(O), u(1), ... u(r-2)

and

= u(0), u(1) .... u(r-2)

be two controls which steer x(r) from x(O) to G(a, r) optimally.

no line segments parallel to any of the vectors

W I i, 2,... = I, 2,m_ J r,

then u = = u(O), u(1)= u(1), ....

If 8G contains

(j)B(j- l)]k, k =

t_; that is U(0)

Proof: Let r* be the first r > 0 for whichK(r-1, x o) _G(1, r) _ _b. Clearly
this is the optimum r. By construction,

K(r* - 1, x o) _G = ¢

Because of the natural ordering GC G(a, r*)CG(a , r*) for 0 < a < am <__1,
the minimum of C(u) occurs with the smallest 0 __ a <_ 1 for which-K(Zr *- 1;

x_)_G(a,r*) _ ¢. Through each point of G(1, r*)-G passes at least one
o_the surfaces 8G(a,r*), 0 <_a <_1. Therefore the optimum C(u) can be

found by finding the smallest 0 <a <1 for which _K(r* -1, x ) _G(a, r*) # ¢.
Call this optimum a*. This first intersection contains only 8he point x(r*-l)
because 8G and therefore _G(a*, r*) contains no line segments parallel

to line segments of 3K(r*-l, x ). By theorem 7 for each point x(r-1)e 8K(r-1,

x o) there is only one control fo_ irrational systems. Therefore, u = _.

The following theorem provides a sufficient condition for optimum control.

Theorem 9. - Consider irrational equation (16) with the boundary of the convex

set G containing no line segments parallel to any of the vectors

[W-I(j)B(j-1)] k _ k = 1,2,...rrg j = 1,2,...r*.

Let the control

u = [u(0), u(1), u(2),.., u(r-2)]

which steers x(r) from x to 8G(a,r), 0 < a < 1 be such that
O -- --
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I. u is an extremal control

2. r?r_ 1 = [w-l(r-1)]'no, II _oll = 1, is normal to a supporting hyper-
plane of G(a, r) at x(r-1)e 8 G(a, r) and directed into the halfspace

containing G, [x(r-1)eSK(r, Xo) ]

3. GS[K(r,x o) - aK(r, Xo) ] # ¢ allr > r*; then u is the unique
optimum control.

Proof: Consider all 0 _< r and 0 <_ a <_. 1 for which K(r-l,x n) and G(a, r)

have a common support plane with K(r-1, x o) on one side and G_(a, r) on the j
other. SinceGCG(a,r), 0 -< a <-- 1 all r > 0 andG(_[K(r, x o) - 3K(r,Xo) _

6, r > r*, there exists no such support plane for r > r* because r_r_l

is an exterior normal to K(r-1, x o) by lemma 7. Therefore r K r*. But r*
is the first r > 0 for which K(r-1, Xo)l_G(r) # ¢. Hence, only for r = r*
does such a support plane exist. Let rbe a common support plane for K(r*-l,

x o) and G(a, r*), 0 --< a --< 1. Since G(a*, r*)cG(a,r*) for a >a*, ,_is a
support plane for G(a*,r*). Also 8G, and hence 8G(a*, r),contains no line
segments parallel to line segments of _)K(r*-l, Xo); therefore,

K(r*-l, Xo)(_G(a*, r*) = x(r*-l) eSK(r*-l, Xo).

Choose

normal to _rand directed into the haIfspace containing G(a*,r*). By lemma

7 and theorem 7 corresponding to any such r7° there is only one extremal
controlwhich leads tox(r*-l)eSK(r*-l, Xo). Therefore the extremal control
u = u is optimum and, by theorem 8, unique.

Remarks: C0[K(r,x_,) - aK(r,x_,_ # ¢ for r > 0 if there exists uk(r) <- 1,
" "_J eSG, r = 0, 1,k = 1, 2, ... m such thatxr+ 1 cGfor eachx r ....

Theorem 9 can be used in constructing the optimum feedback function u =
when the matricesA andB are constant. In this case the method indicated

for linear differential systems can be used to run the system backward to

generate optimum trajectories.

u(x)

CONCLUSIONS

The time-optimal control problem considered for linear differential
equation systems is sufficiently general so that it may represent either the

single-, multiple- or all-component time-optimal regulator problems. For
this problem Pontryagin's maximum principle and associated transversality
condition form conditions which an optimal control must satisfy. With the
addition of a condition concerning the nature of the target set, it is shown
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that these necessary conditions are also sufficient. A method of synthesis is
presented, and a second-order example is treated by this method.

The analogous problem is considered for systems represented by linear
recurrence equations, and analogous results are obtained.

_
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